Exercise 41

Find the work done by the force field

$$
\mathbf{F}(x, y, z)=\left\langle x-y^{2}, y-z^{2}, z-x^{2}\right\rangle
$$

on a particle that moves along the line segment from $(0,0,1)$ to $(2,1,0)$.

Solution

Parameterize the path that the particle moves on by $x=2 t, y=t, z=1-t$ so that

$$
\mathbf{r}(t)=\langle 2 t, t, 1-t\rangle, \quad 0 \leq t \leq 1
$$

Calculate the line integral of the force field over the linear path to find the work done.

$$
\begin{aligned}
W & =\int_{C} \mathbf{F} \cdot d \mathbf{r} \\
& =\int_{0}^{1} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t \\
& =\int_{0}^{1}\left\langle(2 t)-(t)^{2},(t)-(1-t)^{2},(1-t)-(2 t)^{2}\right\rangle \cdot\langle 2,1,-1\rangle d t \\
& =\int_{0}^{1}\left\langle 2 t-t^{2},-t^{2}+3 t-1,-4 t^{2}-t+1\right\rangle \cdot\langle 2,1,-1\rangle d t \\
& =\int_{0}^{1}\left[\left(2 t-t^{2}\right)(2)+\left(-t^{2}+3 t-1\right)(1)+\left(-4 t^{2}-t+1\right)(-1)\right] d t \\
& =\int_{0}^{1}\left(t^{2}+8 t-2\right) d t \\
& =\left.\left(\frac{t^{3}}{3}+4 t^{2}-2 t\right)\right|_{0} ^{1} \\
& =\frac{1^{3}}{3}+4(1)^{2}-2(1) \\
& =\frac{7}{3}
\end{aligned}
$$

